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Abstract. The effect of Richard T. Cox’s contribution to probability theory was to generalize
Boolean implication among logical statements to degrees of implication, which are manipulated
using rules derived from consistency with Boolean algebra. These rules are known as the sum
rule, the product rule and Bayes’ Theorem, and the measure resulting from this generalization is
probability. In this paper, | will describe how Cox’s technique can be further generalized to include
other algebras and hence other problems in science and mathematics. The result is a methodology
that can be used to generalize an algebra to a calculus by relying on consistency with order theory
to derive the laws of the calculus. My goals are to clear up the mysteries as to why the same basic
structure found in probability theory appears in other contexts, to better understand the foundations
of probability theory, and to extend these ideas to other areas by developing new mathematics
and new physics. The relevance of this methodology will be demonstrated using examples from
probability theory, number theory, geometry, information theory, and quantum mechanics.

INTRODUCTION

The algebra of logical statements is well-known and is caledlean algebrd1, 2].
There are three operations in this algebra: conjunctipdisjunctionv, and comple-
mentation~. In terms of the English language, the logical operation of conjunction is
implemented by the grammatical conjunctiand, the logical operation of disjunc-
tion is implemented by the grammatical conjunctian’, and the logical complement

is denoted by the adverboét. Implication among assertions is defined so that a logical
statemeng implies a logical statemeitt writtena — b, whenaV b = b or equivalently
whenaA b = a. These are the basic ideas behind Boolean logic.

The effect of Richard T. Cox’s contribution to probability theory [3, 4] was to general-
ize Boolean implication among logical statements to degrees of implication represented
by real numbers. These real numbers, which represent the degree to which we believe
one logical statement implies another logical statement, are now recognized to be equiv-
alent to probabilities. Cox’s methodology centered on deriving the rules to manipulate
these numbers. The key idea is that these rules must maintain consistency with the un-
derlying Boolean algebra. Cox showed that the product rule derives from associativity
of the conjunction, and that the sum rule derives from the properties of the complement.
Commutativity of the logical conjunction leads to the celebrated Bayes’ Theorem. This
set of rules for manipulating these real numbers is not one of set of many possible rules;
it is the unique generalization consistent with the properties of the Boolean algebraic
structure

Boole recognized that the algebra of logical statements was the same algebra that
described sets [1]. The basic idea is that we can exchange ‘set’ for ‘logical statement’,


Dr. Kevin Knuth
In press: Y. Zhai, G.J. Erickson (eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Jackson Hole WY 2003, AIP Conference Proceedings, American Institute of Physics, Melville NY, 2004.


‘set intersection’ for ‘logical conjunction’, ‘set union’ for ‘logical disjunction’, ‘set
complementation’ for ‘logical complementation’, and ‘is a subset of’ for ‘implies’ and
you have the same algebra. We exchanged quite a few things above and its useful to
break them down further. We exchanged tiiigectswe are studying: ‘sets’ for ‘logical
statements’. Then we exchanged tigerationswe can use to combine them, such as
‘set intersection’ for ‘logical conjunction’. Finally, we exchanged the means by which
we order these objects: ‘is a subset of’ for ‘implies’. The obvious implication of this is
that Cox’s results hold equally well for defining measures on sets. That is we can assign
real numbers to describe the degree to which one set is a subset of another set. The
algebra allows us to have a sum rule, a product rule, and a Bayes’ Theorem analog—just
like in probability theory!

It has been recognized for some time that there exist relationships between other
theories and probability theory, but the underlying reasons for these relationships have
not been well understood. The most obvious example is quantum mechanics, which has
much in common with probability theory. However, it is clearly not probability theory
since quantum amplitudes are complex numbers rather than real numbers. Another
example is the analogy recognized by Carlos Rodriguez between the cross-ratio in
projective geometry and Bayes’ Theorem [5]. In this paper, | will describe how Cox’s
technique can be further generalized to include other algebras and hence other problems
in science and mathematics. | hope to clear up some mysteries as to why the same
basic structure found in probability theory appears in other contexts. | expect that
these ideas can be taken much further, and my hope is that they will eventually lead
to new mathematics and new physics. Last, scattered throughout this paper are many
observations and connections that | hope will help lead us to different ways of thinking
about these topics.

LATTICESAND ALGEBRAS

Basic |deas

The first step is to generalize the basic idea behind the elements described in our
Boolean algebra example: objects, operations, and ordering relations. We start with a set
of objects, and we select a way to compare two objects by deciding whether one object is
‘greater than’ another object. This means of comparison allows us to order the objects. A
set of elements together withb@nary ordering relations called gpartially ordered set
or aposetltis called gpartial order to allow for the possibility that some elements in the
set cannot be directly compared. In our example with logical implication, the ordering
relation was ‘implies’, so that ifd impliesb’, written a — b, thenb is in some sense
‘greater thana, or equivalentlyais in some sense ‘included ib. An ordering relation
is generally written aa < b, and read asb' includesa’ or ‘a is contained iro’. When
a < b, buta # b then we writea < b, and read it asd is properly contained ib'. Last,
if a < b, but there does not exist any elema&mh the setP such thath < x < b, then we
say that b coversa’, and writea < b. In this caseb is an immediate successoradan
the hierarchy imposed by the ordering relation. It should be stressed that this notation is
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FIGURE 1. Four different posets. (a) The positive integers ordered by ‘is less than or equal to’. (b)
The positive integers ordered by ‘divides’. (c) The powersefab, c} ordered by ‘is a subset of’. (d)
Three mutually exclusive logical statemeat, n ordered by ‘implies’. Note that the same set can lead to
different posets under different ordering relations (a and b), and that different sets under different ordering
relations can lead to isomorphic posets (c and d).

general for all posets, but that the relatmeans different things in different examples.

We can draw diagrams of posets using the ordering relation and the concept of
covering. If for two elementsa andb, a < b then we drawb abovea in the diagram.
If a < b then we connect the elements with a line. Figure 1 shows examples of four
simple posets. Figure 1a is the set of positive integers ordered according the the usual
relation ‘is less than or equal to’. From the diagram one can see th&®,2 < 3, but
that 2£ 4. Figure 1b shows the set of positive integers ordered according to the relation
‘divides’. In this poset 2 8 means that 2 divides 8. Also,4 12 since 4 divides 12,
but there does not exist any positive integewherex # 4 andx # 12, such that 4
dividesx andx divides 12. This poset is clearly important in number theory. Figure 1c
shows the set of all subsets (thewersex of {a,b,c} ordered by the usual relation ‘is
a subset of’, so that in this case representsC. From the diagram one can see that
{a} C {a,b,c}, and that{b} is covered by botH{a,b} and{b,c}. There are elements
such a(a} and{b} where{a} ¢ {b} and{b} ¢ {a}. In other words, the two elements
are incomparable with respect to the ordering relation. Last, Figure 1d shows the set
of three mutually exclusive assertioag, andn ordered by logical implication. These
assertions, discussed in greater detail in [6], represent the possible suspects implicated
in the theft of the tarts made by the Queen of Hearts in Chapters Xl and XlI of Lewis



Carroll's Alice’s Adventures in Wonderland

a = ‘Alice stole the tarts!’
k = ‘The Knave of Hearts stole the tarts!’
n = ‘No one stole the tarts!’

Logical disjunctions of these mutually exclusive assertions appear higher in the poset.
The elementL represents the absurdity, aidrepresents the disjunction of all three
assertions] = aV kV n, which is the truism.

There are two obvious ways to combine elements to arrive at new elemenisii he
of two elementsa andb, written aVv b, is their least upper bound, which is found by
finding botha andb in the poset and following the lines upward until they intersect at
a common element. Dually, theeetof a andb, written aA b, is their greatest lower
bound. In Figure 1c{a} Vv {b} = {a,b}, and{a,b} A {b,c} = {b}. In that poset, the
join Vv is found by the set unioty and the meet by set intersectiom. For the poset
of logical statements in Figure 1d the notation is a bit more transparent as the join
is the logical disjunction (OR). For the meet we hatee) k) A (kv n) =k, which is
the logical conjunction (AND). In Figure 1b\ represents the greatest common divisor
gcd(); whereasy represents the least common multipden(). In Figure 1a, 2/3=3,
and 27 3 = 2. In this case/ acts as thenax) function selecting the greatest element;
whereas\ acts as thenin() function selecting the least element. Again, it is important
to keep in mind that the symbolsand A mean different things in different posets.

Some posets possess a top element, which is calfeaind is generally written as.

The bottom element, calldzbttom is generally written ag or equivalentlyz. There is

an important set of elements in the poset calledaheirreducible elementsThese are
elements that cannot be written as the join of two other elements in the poset. The bottom
is never included in the join-irreducible set. In Figure 1c, there are three join-irreducible
elementda}, {b},{c}.

The join-irreducible elements that cover the bottom element are calledtdines
In Figure 1b, the bottom element is 1, the atoms are the prime numbers, and the
join-irreducible elements are powers of primes. Furthermore, two pripreasd q are
relatively prime if their meet is the bottom elemgnt g = L, that is ifgcd(p,q) = 1.

1 In Figure 1d, the atoms are the the exhaustive set of mutually exclusive assar#ons
andn. The join-irreducible elements are extremely important as all the elements in the
poset can be formed from joins of the join-irreducible elements.

These examples show that the same set under two different ordering relations can
result in two different posets (Figures la and b), and that two different sets under
different ordering relations can result in isomorphic posets (Figures 1c and d). | have
discussed these ideas before [6, 8], and one can search out more details in the accessible
book by Davey & Priestly [9], and the classic by Birkhoff [10].

1 This is reminiscent of the notation advocated by Graham, Knuth, & and Patashnik [7, p.115]paftere
denotes thap andq are relatively prime.



L attices

Posets have the following properties. For a pésetnd elementa, b, c € P,

P1. For all a, a<a (Reflexive
P2. If a<b and b<a, then a=b (Antisymmetry
P3. If a<b and b<c, then a<c (Transitivity)

If a unique meek Ay and joinxV y exists for allx,y € P, then the poset is called a
lattice. Each latticel is actually analgebradefined by the operations and A along
with any other relations induced by the structure of the lattice. Dually, the operations
of the algebra uniquely determine the ordering relation, and hence the lattice structure.
Viewed as operations, the join and meet obey the following properties feryatic L

L1 XVX=X, XAX=X (Idempotency
L2. XVy=yVX, XAYy=YAX (Commutativity
L3. xV(yvz)=(xXVy)Vz XA(YAZ)=(XAYy)Az (Associativity
L4. XV (XAY) =XA(XVY) =X (Absorption

There is a special class of lattices caltistributive latticeghat follow
D1. xA(yVz) = (xAY)V(xAz) (Distributivity of A overV)
and its dual
D2. xV(yAz) = (XVy)A(xVz) (Distributivity of Vv overA)

All distributive lattices can be expressed in terms of elements consisting of sets where the
join vV and the meet are identified as the set uniarand set intersection, respectively.

Some distributive lattices possess the property catiechplementatiorwhere for
every elemenx in the lattice, there exists a unique element such that

Cl xv~Xx=T
C2. XA~x=_1

Boolean lattices areomplemented distributive latticeSince all distributive lattices can

be described in terms of a lattice of sets, the condition of a distributive lattice being
complemented is equivalent to the condition that the lattice contains all possible subsets
of the lattice elements, which is called tpewerset Thus lattices of powersets are
Boolean lattices. The situation gets interesting when one starts removing elements from
the powerset. For example, if one element is removed from a Boolean lattice, then there
will be another element that no longer has a unique complement. This is equivalent to
adding constraints, and these constraints take the Boolean lattice to a distributive lattice,
which no longer has complementation as a general property.

These are basic mathematical concepts and are not restricted to the area of logical
inference. Viewed as a collection of partially ordered objects, we have a lattice. Viewed
as a collection of objects and a set of operations, suchasd A, we have an algebra.
What | will show in the remainder of this paper is that a given lattice (or equivalently
its algebra) can be extended to a calculus using the methodology introduced by Cox,
and that there already exist a diverse array of examples outside the realm of probability
theory.



DEGREES OF INCLUSION

For distinctx andy in a poset wherg includesx, writtenx <, it is clear thatx does not
includey, y £ x. However, we would like to generalize this notion of inclusion so that
even though does not includg, we can describe tha#egreeto whichx includesy. This

idea is perhaps made more clear by thinking about a concrete problem in probability
theory. Say that we know that a logical statemeewtoV cis true. Clearlya— avbvc
sincea< aVbVc. However, it is useful to quantify theegreeto whichav bV cimplies

a, or equivalently the degree to whiehincludesaVv bV c. It is in this sense that we aim

to generalize inclusion on a poset to degrees of inclusion.

The goal of this paper is to emphasize that inclusion on a poset can be generalized to
degrees of inclusion, which results in a set of rules or laws by which these degrees may
be manipulated. These rules are derived by requiring consistency with the structure of
the poset. At this stage, it is not clear for exactly what types of posets or lattices this can
be done, precisely what rules one obtains and under what conditions, and exactly what
types of mathematical structures can be used to describe these degrees of inclusion.
These remain open questions and will not be explicitly considered in this paper.

What is clear is that Cox’s basic methodology of deriving the sum and product rules
of probability from consistency requirements with Boolean algebra [3, 4] has a much
greater range of applicability than he imagined. His specific results are restricted to
complemented lattices as he used the property of complementation to derive the sum
rule. In the following sections, | will consider the larger class of distributive lattices,
which include Boolean lattices as a special case. To derive the laws governing the
manipulation of degrees of inclusion, | will rely on the proofs introduced by Ariel
Caticha [11], which utilize consistency with associativity and distributivity. As | will
show below, the sum rule is consistent with associativity of the join, and therefore most
likely enjoys a much greater range of applicability—perhaps extending to all lattices.
The derivations that follow will focus on finite lattices, although extension to an infinite
lattice is reasonable.

Joinsand the Sum Rule

Throughout this subsection, | will follow and expand on Caticha’s derivation and
maintain consistency with his basic notation, all the while considering this endeavor as
a generalization of inclusion on a poset. We begin by defining a fungtitat assigns
to a pair of elements andy of the latticeL a real numbeérd € R, sothatp: L xL — R

d = o(x.y), 1)

2 For simplicity | will work with degrees of inclusion measured by real numbers. However, it should be
kept in mind that Caticha’s derivations were developed for complex numbers [11], Aczél's solutions for
the associativity equation were for real numbers, groups and semigroups [12], and Rota’s theorems for the
valuation equation apply to commutative rings with an identity element [13].



and remember thad represents the degree to whighncludesy, which generalizes
the algebraic inclusior<. 2 This can be compared to Cox’s notation where instead
of the function@(x,y), he writes(y — x) for the special case where he is considering
implication among logical statements. By replacing the comma with the sajigdg),

we obtain a notation more reminiscent of probability theory.

Now consider two join-irreducible elements of the lattiagndb, whereaAb= 1,
and a third elemeritsuch thata <t andb <t. We will consider the degree to which the
join aVv b of these join-irreducible elements includes the elemeAs aV b is itself a
lattice element, the functiog allows us to describe the degree to whachb includest.
This degree is written ag(aV b,t). AsaA b= 1, this degree of inclusion can only be
a function ofg(a,t) andg(b,t), which can be written as

(P(a\/baU = S((p(avt)7(p(b7t)>' (2)

Our goal is to determine the functi@which will tell us how to use the degree to which
aincludest and the degree to whidhincludest to compute the degree to whieh/ b
includest. In this sense we are extending the algebra to a calculus.

The functionS must maintain consistency with the lattice structure, or equivalently
with its associated algebra. If we now consider another join-irreducible elernent
whereanc= L andbAc= L, and form the lattice elemenja Vv b) v ¢, we can use
associativity of the lattice to write this element a second way

(avb)vc=av(bvec). (3)

Consistency with associativity requires that each expression gives exactly the same result

Sp(avb,t), p(ct)) = Xp(at), @(bvct)). (4)
Applying Sto the argumentg(aV b,t) andg(bV c,t) above, we get
SS(@(a,t), p(b.1)), p(c.t)) = Xp(a,t), S(p(bt), p(c,1))). ()
This can be further simplified by letting= ¢(a,t), v= ¢(b,t), andw = ¢(c,t), which
gives
S(S(U,V),W) = S(U7S(Va W)) (6)

This result is an equation for the functi®which emphasizes its property of associativ-
ity. To people who are familiar with Cox’s work [3, 4], this functional equation should be
immediately recognizable as what Aczél appropriately caledassociativity equation

[12, pp.253-273]. In Cox’s derivation of probability theory we are accustomed to seeing
this in terms of the logical conjunction. However, it is important to recognize that both
the conjunction and disjunction follow associativity, and that this result generalized to
the join is perfectly reasonable. The general solution, from Aczél [12], is

S(u,v) = f(FHu)+ F7(v), (7)

3 This diverges from Caticha’s development as he considers functions that take a single poset element as
its argument. | discuss this difference in more detail in the sections that follow.



wheref is an arbitrary function. This can be simplified by lettipe- f 1

9(S(u,v)) = g(u) +9(v), (8)
and writing this in terms of the original lattice elements we find that
g(e(avh,t)) =g(e(at))+g(e(bt)). (9)

As Caticha emphasizes, this result is remarkable, as it reveals that there exists a
functiong : R — R re-mapping these numbers to a more convenient representation.
Thus we can define a new map from the lattice elements to the real numbers, such that
v(a,t) =g(@(at)). This lets us write the combination rule as

v(avb,t) =v(at)+v(bt), (10)

which is the familiarsum rule of probability theory for mutually exclusive (join-
irreducible) assertionsandb

p(avbit) = p(alt) + p(bl). (11)

This result is extremely important, as | have made no reference at all to probability
theory in the derivation. Only consistency with associativity of the join, which is a
property of all lattices, has been used. This means that for a given lattice, we can define
a mapping from a pair of its elements to a real number, and when we take joins of its
join-irreducible elements, we can compute the new value of this join by taking the sum
of the two numbers. There are some interesting restrictions, which | will discuss later.

Extending the Sum Rule

The assumption made above was that the two lattice elements were join-irreducible
and that their meet was the bottom element. How do we perform the computation in the
event that this is not the case? In this section | will demonstrate how the sum rule can be
extended in a distributive lattice. Consider two lattice elemgaisdy. In a distributive
lattice all elements can be written as a unique join of join-irreducible elements

n k
x=(\Ve)v(Va) (12)
i=1 i=1
and - y
y=(\/r)v(\Va), (13)
i=1 i=1

where | have written them so that the join-irreducible elements they have in common are
the elements)y, 0, ...0k- The join ofx andy can be written as

n k

xvy=(\/p)v(\Va)v\/ )V a), (14)
. v .



which can be simplified to

n k m
xvy=(\/p) \/ v\, (15)
i=1 i=1 i=1
since byL1 andL?2
k k k
Va)viVa) =V a. (16)
i=1 i=1 i=1

Since thep;, gi, andr; are all join-irreducible elements, we can use the sum rule repeat-

edly to obtain
n k m
v(XVy,t) = Z\v(pi,t) +.Zlv(qi,t) +.;v(ri,t). (17)

Notice that the first two terms on the right aréx,t). | will add two more terms to the
right (which cancel one another), and then group the terms conveniently

V(va,t)z(_i\/(pi,t)fivmu, 2 V(i) Z (ai,t) Zv Gi,t). (18)

This can be further simplified to give
k

v(XVy,t) :v(x,t)+v(y,t)—_Zv(Qi,t), (19)

=~

Ma

where we have the original sum rule minus a cross-term of sorts, which avoids double-
counting the join-irreducible elements. The lattice elements forming this additional term

can be found from )

xAy=\/a, (20)
i=1
so that )
V(XAY,t) = ZV<Qi,t)~ (21)
i=
Note that to maintain consistency with the original sum rule, we must require that
v(L,t)=0. (22)
This allows us to write the generalized sum rule as
V(XVy,t) =v(xt)+v(y,t) — v(XAY,t). (23)

What is remarkable is that we have derived a result that is valid for all distributive
lattices! When joins of more than two elements are considered, this procedure can
be iterated to avoid double-counting the join-irreducible elements that the elements
share. Changing notation slightly this equation is identical to the general sum rule for
probability theory.

P(XVY[t) = p(X|t) + p(y[t) — p(XAY]t). (24)



Valuations

| recently found that these ideas have been developing independently in geometry and
combinatorics with influence of Gian-Carlo Rota [14, 13, 15k&uationis definedon
a lattice of sets (distributive lattice) as a functienL — A that takes a lattice element
to an element of a commutative ring with identity and satisfies

v(avb)+v(anb) =v(a)+v(b), (25)

wherea,b € L, and
v(L)=0. (26)

By subtractingv(aA b) from both sides, we see that the valuation equation is just the
generalized sum rule (Egn. 23)

v(aVb) =v(a)+v(b) —v(anb). (27)

When applied to Boolean lattices, valuations are called measures. As far as | am aware,
the valuation equation was defined by mathematicians and not derived. However, follow-
ing Cox and Caticha, we have derived it directly from the sum rule, which was derived
from consistency with associativity of the join.

Note that valuations, as we describe them here have a single argument and do not
explicitly consider the degree to which one lattice element includes a second lattice el-
ement. This is not a problem, as one can define bi-valuations, tri-valuations, and multi-
valuations although it is not clear how to interpret all of these functions as generaliza-
tions of inclusion on a poset. One can define valuations that represent the degree to
which an element includesT, by

V(X) = Vv(x,T), (28)
which can be interpreted in probability theory as a prior probalfility
v(X) = p(X|T). (29)

However, throughout this paper | will work with bi-valuations, as they can be used to
represent the degree to which one lattice element includes another.
M06bius Functions

| have demonstrated how the sum rule can be extended for distributive lattices, but
how is this handled in general for posets where associativity holds? One must rely on

4 In this notationT refers to the truism, which is the join of all possible statements. In the past, | have
preferred to write probabilities in the style of Jaynes wHeiseused to represent our ‘prior information’

as inp(x|l). The truism represents this prior information in part, since we kaopriori that one of

the exhaustive set of mutually exclusive assertions is true. However, excluded in the nptatibhis
explicit reference to the part of the prior informatibithat is relevant to the probability assignments. |
choose to leave out of the probability notation here to emphasize the fact that the funpttakes two
lattice elements as arguments—not abstract symbols.like



what is called the Mdbius function for the poset. | will begin by discussing a special
class of real-valued functions of two variables defined on a poset, sudh,&3, which

are non-zero only whex<'y. This set of functions comprises tireidence algebraf

the poset [16]. The sum of two functiohs= f + g is defined the usual way by

h(x,y) = f(X,y) +9(xY), (30)

as is multiplication by a scaldr= A f. However, the product of two functions in the
incidence algebra is found by taking the convolution over the interval of elements in the
poset

hixy)= % f(x29zy). (31)

X<ZLy

We can define three useful functions [16, 17]

1 if x= .

o(xy) = { 0 if X#z (Kronecker delta functign (32)
1 if x<y . . .

nx,y) = { 0 if x;éz (incidence function (33)
1 if x< .

(xy) = {0 it X%z (zeta functiol (34)

The delta function indicates when two poset elements are equal. The incidence function
indicates when an elemexis properly contained in an element_ast, the zeta function
indicates whethey includesx, which means that the zeta function is equal to the sum of
the delta function and the incidence function

Z(Xv y) = n<X> y) + 5(X7 y) (35)

It is important to be able to invert functions in the incidence algebra. For example, the
inverse of the zeta functiopi(x,y) satisfies

> {(x2u(zy) =3(xy). (36)

x<zzy

One can show [13, 16, 18] that the functip(x,y), called theMdbius functionis defined
by
H(X,x) =1 xeP
ngzgy“(x7 Z) =0 x< y (37)
pxy)=0  if x£y,

where
Y M= % uzy). (38)



Rather than providing a proof, | will demonstrate this by considering the possible cases.

Obviously, ifx =y then
(Y, Y)u(y,y) =1, (39)

which is consistent with the first condition for the Mdbius function (37). Next,<fy
we can use the fact thgtx,z) = 1 only whenx < zto rewrite (36)

Y {(xu(zy) =3(xy). (40)
X<y
as
> uzy)=0(xy). (41)
X<z<y

The sum can be rearranged using (38)

Y ux2)=5(xy). (42)

X<ZLy

which is consistent with the second condition (37) wieny. Last, ifx > y then (36)
is trivially satisfied.

More importantly, the Mobius function is used to invert valuations on a pBset
[13, 16, 18] so that given a function

gW%igfw) (43)
one can findf (x) by
f®=;u@m@- (44)

What's going on here is made more clear [18] by considering the poset of natural
numbersN in the usual order (see Fig 1a). This poset is totally ordered and the Mdbius
function is easily found to be

1 if x=y
un(xy) =< -1 if x=<y (45)
0 otherwise
Given
o)=Y f(m) (46)
m<n

we find, using (44) and (45), that

f(n)=g(n) —g(n-1). (47)

This is the finite difference operator, which is the discrete analog ofuheéamental
theorem of calculufor a poset [16, 18], which basically relates sums (46) to differences
(47).



Readers well-versed in number theory have seen the classic M6bius function [19]
used to invert the Riemann zeta function

(9= 3 (48)

which is important in the study of prime numbers (refer to the poset in Fig. 1b). The
Maobius function in this case is defined [16, 18, 7] as

Ul =1
zgriu(on -0 (49)

where the sum is over all numbeatslividing m, that is all numbersl < min the poset
in Fig. 1b. Specifically, its values are found by

0 if d is divisible by some P

“<d):{ (—1)k if is a product of k distinct primes (50)
wherep is a prime. This leads to the inverse of the zeta function given by
1 & Hn
i _ 51
(9 & &1

Clearly, order theory and the incidence algebra ties together areas of mathematics
such as the calculus of finite differences and number theory. In the next section, | will
show that we can use the Md6bius function to extend the sum rule over the entire poset.

The Inclusion-Exclusion Principle

By iterating the generalized sum rule, we obtain what Rota callsirtbkeision-
exclusion principlg15, p.7]

V(X VXV -+ VX, t) = Zv(xi,t) — Zv(xi AXj,t) + Z V(Xi AXj A X, t) —--- (52)
I i<] <)<k
This equation holds for distributive lattices where every lattice element can be written
as a unique join of elements. As | will show, this principle appears over and over again,
and is a sign that order-theoretic principles and distributivity underlie the laws having
this form.

Rota showed that the inclusion-exclusion principle can be obtained from the Mébius
function of the poset [16, 18]. For a Boolean lattice of sets the Mdbius function is given
by

Ha(xy) = (=M (53)
wheneverx C y and 0 otherwise, wherg| is the cardinality of the set. The Mobius
function for a distributive lattice is similar

1 if x=y
po(x,y) =< (1" if x<y (54)
0 if x£y



where in the second cagés the join ofn distinct elements covering This leads directly
to the alternating sum and difference in the inclusion-exclusion principle as one sums
down the lattice.

The inclusion-exclusion principle appears in a delightful variety of contexts, several
of which will be explored later. We have already seen it in the context of the sum rule of
probability theory

P(XVY[t) = p(X|t) + p(y[t) — p(XAY]t). (55)

It also appears in Cox’s generalized entropies [4], which were explored earlier in
McGill's multivariate generalization of mutual information [20], and examined more
recently as co-information by Tony Bell [21]. The familiar mutual information makes
the basic point

1(%,y) =H(X)+H(y) —H(Xy). (56)

Again, this is the inclusion-exclusion principle at work. Rota [13] gives an interesting
example from Pdlya and Szeg6 [22, Vol 11., p. 121] which | will shorten here to

maxa,b) = a+b—min(a,b), (57)

wherea andb are real numbers. This equation may seem horribly obvious, but like the
others, it can be extended by iterating. The idea is to include and exclude down the
lattice! The inclusion-exclusion pattern is an important clue that order theory plays an
important role.

Assigning Valuations

There are some interesting and useful results on assigning valuations and extending
them to larger lattices (eg. [15, p.9]). The fact that probabilities are valuations implies
that these results are relevant to assigning probabilities. Specifically, Rota [13, Theorem
1, Corollary 2, p.35] showed that

A valuation in a finite distributive lattice is uniquely determined by the
values it takes on the set of join-irreducibleslgfand these values can be
arbitrarily assigned.

By consideringp(x| T), this result can be applied to the assignment of prior probabili-
ties. In the lattice of logical assertions ordered by logical implication, the join-irreducible
elements are the exhaustive set of mutually exclusive assertions. Thus by assigning their
prior probabilities, the probabilities of their various disjunctions are uniquely deter-
mined. This is easy, just use the sum rule.

More profound is the fact that Rota’s theorem states that these assignments can be
arbitrary. This means that there is no information in the Boolean algebra of these asser-
tions, and hence the inferential calculus, to guide us in these assignments. Thus proba-
bility theory tells us nothing about assigning priors. Other principles, such as symmetry,
constraints, and consistency with other aspects of the proimestbe employed to as-
sign priors. Once the priors are assigned, order-theoretic principles dictate the remaining
probabilities through the inferential calculus.



Last, it is not clear to me how to assign valuations in posets where at least one
element can be written as the join of join-irreducible elements in more than one way,
such as in the lattic®ls [9, Fig. 4.3(i)]. Once again, consistency must be the guiding
principle. When there is more than one way to write an element as a join of join-
irreducible elements, the valuations assigned to those elements must be consistent with
the particular sum rule for that lattice. This is not an issue for probability theory, but it
will become an issue when this methodology is extended to other problems.

M eets and the Product Rule

The product rule is usually seen as being necessary for computing probabilities of
conjunctions of logical statements, whereas the sum rule is necessary for computing the
probabilities of disjunctions. This actually isn’t true. The sum rule allows one to compute
the probabilities of conjunctions equally well. Rearranging Equation 24 gives

P(XAY[t) = p(X|t) + p(y|t) — p(xVylt), (58)

or more generally
V(XAY,t) = v(X,t) +v(y,t) —v(XVYt). (59)

The important point is that for some problems, this just isn’t useful.

The key to understanding the product rule is to realize that there are actually two kinds
of logical conjunctions in probability theory. The first is trend that is implemented
by the meet on the Boolean lattice. In the earlier example on who stole the tarts, this
type of conjunction leads to statements likes a) A (nV a), which can be read literally
as ‘Somebody stole the tarésmd it wasn't the Knave!The meet performs the role of
the logical conjunction while workingvithin the hypothesis space. The second type of
logical conjunction occurs when omembinedwo hypothesis spaces to make a bigger
space. For example, we can combine a latfiagescribing different types of fruit, with
a latticeQ describing the quality of the fruit by taking a Cartesian produck of Q,
which results in statements lik&he fruit is an appleand it is spoiled! This type of
conjunction is not readily computed using the sum rule. To handle both types of logical
conjunctions, we will derive the product rule. In the section on quantum mechanics, we
will see that these ideas are not limited to probability theory.

The Lattice Product

We can define the latticé describing the type of fruit by specifying the two atomic
assertions covering the bottom

a="Itis an apple’
b="Itis a banana!.

This will form a Boolean lattice with four elements shown on the left-side of Figure 2a.
This Boolean lattice structure with two atoms is denote@byAs usual, the top element



FIGURE 2. a. The product of two Boolean latticEsandQ can be constructed by taking the Cartesian
product of their respective elements. b. This leads to the product IRtEcE x Q, which represents both
spaces jointly. HoweveP contains seven statements (gray circles), which belong to an equivalence class
of absurd statements. c. By grouping these elements in the equivalence class ymgecan form a

new latticeP, which is a subdirect product & andQ. d. An alternate lattice structure can be formed by
treating the statements represented by the join-irreducible elements of the subdirect Braslatdmic
statements and forming their powerset. This yields a Boolean |&titistinct from, yet isomorphic to the
Cartesian produd®. Both logical structure® andB are implicitly used in probability theory, and both
follow the distributive lanD1.



stands for the truism, which is a logical statement that shysan apple or a banana!
which we write symbolically a§ ¢ = aV b. The bottom is the absurdity which says *
Is an apple and a bananalwritten L = aAb. The lattice is clearly Boolean as the
complement ofiis b, and vice versa (.eaAb= L andavb= TE).

Similarly, what is known about the quality of the fruit can be described by the lattice
Q generated by the atomic assertions

r ="‘ltis ripeV
s="ltis spoiled!".

These assertions generate the center lattice in Figure 2a, which is also Boolean (isomor-
phic t022).

We can combine these two lattices by taking it&ice product Graphically, this can
be constructed by fixing one of the two lattices, and placing copies of the other over
each element of the former. In Figure 2a, | fix the lattizand place copies of the lattice
F over each element d. The elements of the product latti€= F x Q are found
by forming the Cartesian product of the elements of the two lattices. For example, the
element(a,r) represents the logical statement that sayse*fruit is an apple and it is
ripe!” Two elements ofF x Q, (f1,01) and(f2,02), can be ordered coordinate-wise [9,
p.42], so that

(f1, ) < (f2,02) when f; <f, and g; <0, (60)

which leads to a coordinate-wise definitionnond A
(fr,q1) vV (f2,02) = (f1V 2,1V O2) (61)
(fr,aq0) A (f2,02) = (frA f2,qu A Q2). (62)

The result is the Boolean lattide in Figure 2b, which is isomorphic t8? x 22 = 24,
| should make the meaning of some of these statements more explicit. For example,
(Te,r) is a statement that sayk Is an apple or a banana and it is ripeSimilarly,
(b, Tq) is a statement that sayi$ is a banana that is either ripe or spoiled!
The lattice product is associative, so that for three latticés andL

Ix(KxL)=(IxK)xL. (63)

This associativity translates to the associativity of the meet of the Cartesian products of
the elements, which is consistent with the fact that the lattice product of two lattices is a
lattice.

What is interesting is that there are seven elements (gray circles) that involve at least
one of the two absurdities. These seven elemenis, Lg), (Lr, Tq), (Lr,r), (& Lo),
(b, Lo), (LF,s), and(Lr, Lr) each belong to aaquivalence classf logically absurd
statements as they say things likeis ripe and spoiled!and ‘It is an apple and a
banana! If we group these absurd statements together under a new symbaed can
construct the latticd® in Figure 2c. | have simplified the element labels so that the
element stands for(b, Tq), which can be read aghe fruit is a banand! ands stands
for (Tg,s), which can be read aghe fruit is spoiled! The lattice P is a subdirect



productof the latticess andQ sinceP can be embedded into their Cartesian prodct
and its projections onto bofh andQ are surjective (onto, but not one-to-one).
The symbolA again represents the meet in the subdirect proBusb that the meet
of a ands gives the elemera A s, which is equivalent to a spoiled apple, s). In this
way we see that the meet in the subdirect product lattice behaves like the meet in the
original hypothesis space, while simultaneously implementing the Cartesian product.
However, there are some key differences. FiPs§ not Boolean. For example, there is
no unigue complement to the statemants, as bothb andr satisfy the requirements
for the complement

(ans)vb=T

(ans)Ab=_1
and

(ans)vr=T

(aAns)Ar= 1

A more important difference is the fact that the meePifollows both distributive
laws D1 andD2, whereas the meet idfollows only D1. To demonstrate this consider
the following in the context oP

an(rvs)=anT =a, (64)
and
(anr)Vv(ans) =a, (65)
which is consistent witiD1
an(rvs)=(anr)v(ans). (66)
Now consider
av(rans)=av.l=a, (67)
whereas
(@vrA(@avs)=TAT =T, (68)

which is inconsistent witlb2, which is distributivity ofv over A. The difficulty here

is clear. In the Cartesian produetand the subdirect produé&t, statements lika Vv r

andaV sdo not have distinct interpretations since one cannot use the Cartesian product
to form the statementt'is an apple or the fruit is ripé!Another way to look at the

loss of propertyD2 is to notice that because we have identified the bottom elements in
the equivalence relation we lose distributivity \ofover A (propertyD2), and maintain
distributivity of A overV (propertyD1). Had we identified the top elements we would
have obtained the dual situation.

There is one last important construction we can perform. We can construct another
lattice by considering the join-irreducible statements of the subdirect product differently.
If we letaAr,ans, bAr, bAsrepresent an atomic set of exhaustive mutually exclusive
statements rather than a Cartesian product of statements, then all other elements in the
lattice can be formed from the joins of these atoms. The result is a Boolean Bttiag
is isomorphic to the lattice produ, so thatB ~ P ~ 2%, In this lattice the atomic



statements, such asAr, do not represent Cartesian products, but instead represent
elementary statements likdt is a ripe apple!. For this reasonB contains logical
statements not included in the Cartesian prodeicir the subdirect produd®. For
example, we can construct statements ljke\r) v (aA s), which state It is either a

ripe banana or a spoiled applelattices formed this way naturally follow both1 and

D2, as they are Boolean.

The important point here is that we use each of these constructs in different applica-
tions of probability theory without explicit consideration. Most relevant is the fact that
each of these three lattice construef$, andB follows D1. Thus if we require that our
calculus satisfies distributivity of overV then we will have a rule that is consistent
with properties of each of the logical constructs we have considered here.

Deriving the Product Rule

The product rule is important as it gives us a way to compute the degree of inclusion
for meets of elements in a lattice constructed from the product of two distributive lattices.
We look for a functionP that allows us to write the degree to which the meet of two
elementsAyincludes a third elementwithout relying on the joirx\Vy. Cox chose the
form

V(XAY,E) = P(V(x,1), V(y,XAL)), (69)

which was later shown by Tribus [23] and Smith & Erickson [24] to be the only
functional form that satisfies consistency with associativity. of

Consider the elements andb wherean b = L, and the elements and s where
r ANs= 1. We reproduce Caticha’s derivation [11] and consider distributdityof the
meet over the join in the lattice product

(a,(rvs))=an(rvs)=(anr)Vv(ans). (70)

This equation gives us two different ways to express the same poset element. Consis-
tency with distributivityD1 requires that the same value is associated with each of these
two expressions. Using the sum rule (24) and the foriiA cbnsistent with associativity

(69), we find that distributivity requires that

P(v(at),v(rvs,ant)) =v(aArt)+v(anst), (71)
which further simplifies to
P(v(at),v(r,ant)+v(s,ant)) =P(v(at),v(r,ant))+P(v(at),v(s,ant)). (72)

Ifwe letu=v(at),v=v(r,ant), andw = v(s,aAt), the equation above can be written
more concisely as
P(u,v-+w) = P(u,v) + P(u,w). (73)

5 | use the sum rule in the following derivation, which requires that | use the mappiather thanp.



This is a functional equation for the functiéh which captures the essence of distribu-
tivity. By working with this equation, we will obtain the functional form Bf

The idea is to show th&t(u, v+w) is linear in its second argument. If we et w+v,
and write (73) as

P(u,2) = P(u,v) + P(u,w), (74)
we can look at the second derivative with respea tdsing the chain rule we find that
d 0Jzd 0
v avoz 97 (75)
This can be done also fev giving
0 0 0
Writing the second derivative with respectzas
0> 9 0
92~ vow (77
we find that ,
22P(u,2) = %Va%é(P(u,V) +P(u,w))
= @,(@,P(U,W)) (78)
= a—w(a—vp(%W))
= 0,
which means that the functidnis linear in its second argument
P(u,v) = A(u)v+ B(u). (79)

If (79) is substituted back into (73) we find thagu) = 0.
We can us®1 another way by consideringV b) Ar. This leads to a condition that
looks like
P(v+w,u) = P(v,u) + P(w,u), (80)

whereu, v, w are appropriately redefined. Following the approach above, we finéthat
Is also linear in its first argument

P(u,v) = A(v)u. (81)
Together with (79), the general solution is
P(u,v) = Cuy (82)
whereC is an arbitrary constant. Thus, we have pineduct rule

V(XAY 1) =Cv(Xt)v(y,xAt), (83)



which tells us the degree to which the new elementy includes the elemertt This
looks more familiar if we se€ = 1 and re-write the rule in probability-theoretic notation,

P(XAY[t) = p(X|t) p(y|XAt). (84)

If the lattice we are working in is formed by the lattice product, (83) can be rewritten
using the Cartesian product notation

V((%,Y), (tx,ty)) = Cv((X, Ty), (b ty))V((Tx,Y), (XAt ), (85)
wherexA\y = (X,y), t = (i, ty), X= (X, Ty), andy = (Tx,y). Simplifying, we see that
V((X7 y)? (txatY)) = CV(X7 tX)V(y7 ty); (86)

wherev (x,ty) is computed in one lattice andy,ty) in the other.

BAYES THEOREM

The origin of Bayes’ Theorem is perhaps the most well-known. It derives directly from
the product rule and consistency with commutativity of the meet. When it is true that
XAY =YAX, one can write the product rule two ways

V(XAY, 1) =Cv(X,t)v(y,XAt)

and
V(yAX,t) =Cv(y,t)v(X,yAtL).

Consistency with commutativity requires that these two results are equal. Setting them
equal and rearranging the terms leadB&yes’ Theorem

V(X t)V(y,XAt)
viy,t)

This will look more familiar if we letx = h be a logical statement representing a
hypothesis, and lef = d be a new piece of data, and change notation to that used in

probability theory
p(hit) p(dihAt)

p(dlt)
This makes more sense now that it is clear that the two staterhemdd come from
different lattices. This is why represents aewpiece of data, it represents information

we were not privy to when we implicitly constructed the lattice including the hypothesis

h. The statementsandd belong to two different logical structures and Bayes’ Theorem
tells us how to do the computation when we combine them. To perform this computation,
we need to first make assignments. The prior assigniit) is made in the original
lattice of hypotheses, whereas the likelihood assignnpgdth At) is made in the
product lattice. The evidence, while usually not assigned, refers to an assignment that
would take place in the original data lattice.

V(X,YAL) =

(87)

p(hld At) = (88)



LAWSFROM ORDER

Why is all this important? Because, the sum rules are associated with all lattices, and
sum and product rules are not just associated with Boolean algebra, but with distributive
algebras. This is a much wider range of application than was ever considered by Cox, as
the following examples demonstrate.

I nformation Theory from Order

Most relevant to Cox is the further development of the calculus of inquiry [25, 26,
27, 8, 6], which appears to be a natural generalization of information theory. The
extension of Cox’s methodology to distributive lattices in general is extremely important
to this development, as the lattice structure of questions is not a Boolean lattice, but
is instead thdree distributive latticel8, 6]. This free distributive lattice of questions
Is generated from the ordered set of down-sets of its corresponding Boolean lattice of
assertions. A probability measure on the Boolean assertion lattice induces a valuation,
which we callrelevanceor bearing on the question lattice. | will show in a future paper
[28] that the join-irreducible questions, calletementary questionsy Fry [26], have
relevances that are equal tgplogp, called thesurprise wherep is the probability of
the assertion defining the elementary question. Joins of these elementary questions form
real questions, which via the sum rule have valuations formed from sums of surprises,
or entropy Going further up the question lattice, one uses the generalized sum rule,
which results in mutual information, and eventually generalized entropy [4], also called
co-information [21]. The lattice structure is given by the algebra of questions, and the
generalized entropies are the valuations induced on the question lattice by the probability
measure assigned to the Boolean algebra of assertions. Exactly how these valuations are
induced, manipulated, and used in calculations regarding questions will be discussed
elsewhere [28].

Geometry from Order

Perhaps more interesting is the fact that much of geometry can be derived from these
order-theoretic concepts. There has been much work done in this area, which is called
geometric probabilityThis invariably calls up thoughts of Buffon’s Needle problem, but
the range of applications is much greater. | have found the introductory book by Klain
and Rota [15] to be very useful, and below | discuss several illustrative examples from
their text.

The Lattice of Parallelotopes

Imagine a Cartesian coordinate system-dimensions. We will consider orthogonal
parallelotopes, which are rectangular boxes with sides parallel to the coordinate axes.



FIGURE 3. Anillustration of the join and meet of two orthogonal parallelotopes.

By taking finite unions (joins) and intersections (meets) of these parallelotopes, we can
construct the lattice (or equivalently the algebrapafimensional parallelotopd®ar(n)
[15, p.30]. In one dimension, the parallelotope is simply a closed interval on the real
line.

To extend the algebra to a calculus, to each paralleldfope will assign a valuatich
u(P), which is invariant with respect to geometric symmetries relevaRaton), such
as invariance with respect to translations along the coordinate system and permutations
of the coordinate labels. Assigning valuations that are consistent with these important
geometric symmetries is analogous to Jaynes’ use of group invariance to derive prior
probabilities [29].

Before looking at these invariant valuations in more detail, Figure 3 shows the join of
two parallelotope$; andP.. Since this lattice is distributive, the sum rule can be used
to compute the valuation of the joR, v P,

U(PLV P2) = p(Py) + U(P2) — U(PLAR,). (89)

Again we see the familiar inclusion-exclusion principle.

6 Note that one can considgfP) = (P, T), whereT refers to a parallelotope to which the measure is in
some sense normalized.



A Basis Set of Invariant Valuations

At this point, you have probably already identified a valuation that will satisfy invari-
ance with respect to translation and coordinate label permutation. One obvious valuation
for three-dimensional parallelotopes suggested by the illustratiooiusne

H3(X) = X1X2X3, (90)

wherexy, xo andxs are the side-lengths of the parallelotope. Surprisingly, this is not the
only valuation that satisfies the invariance properties we are considering. There is also a
valuation, which is proportional to treurface area

Ho(X) = X1X2 + XoX3 + X3X1, (91)

which is easily shown to satisfy both the invariance properties as well as the sum rule. In
fact, there is a basis set of invariant valuations, which in the case of three-dimensional
parallelotopes consists of the volume, surface aresn width

H1(X) = X1+ X2 + X3, (92)

and theEuler characteristicug, which for parallelotopes is equal to one for non-empty
parallelotopes and zero otherwise. The fact that these valuations form a basis means that
we can write any valuation as a linear combination of these basis valuations

U = apz+bpz +cpy +dpo. (93)

In general, it is not clear under which invariance conditions one obtains a basis set
of valuations rather than a unique functional form. This is an extremely important
issue when we consider the issue of assigning prior probabilities in probability theory.
Jaynes’ demonstrated how to derive priors that are consistent with certain invariances,
and cautioned that if the number of parameters in the transformation group is less than
the number of model parameters, then the prior will only be partially determined [29].
How to consistently assign priors in this case is an open problem.

Furthermore, the Euler characteristic is interesting in that it takes on discrete rather
than continuous values. This is something that is not seen in measure theory indicating
that this development is more general than the typical measure-theoretic approaches. An
important example of this has been identified within the context of information theory.
Aczél [30] showed that the Hartley entropy [31], which takes on only discrete values,
has certainnatural properties shared only with the Shannon entropy [32]. This will
also be discussed in more detail elsewhere [28].

The Euler Characteristic

The Euler characteristic appears in other lattices and is perhaps best known from the
lattice of convex polyhedra where it satisfies the following formula

Ho=F —E+V, (94)



whereF is the number of faceg, is the number of edges, aNds the number of vertices

[14]. For all convex polyhedra in three-dimensiopg= 2. For example, if we consider

a cube, we see that it has 6 faces, 12 edges, and 8 vertices, se-tha#+@® = 2. Again,

this is an example of the inclusion-exclusion principle, which comes from the sum rule.
In the lattice of simplicial complexes, a face is a 2-simplex, an edge is a 1-simplex, and
a vertex is a 0-simplex. To compute the characteristic, we add at one level, subtract at
the next, and add at the next and so on. This geometric law derives directly from order
theory via the sum rule.

Spherical Triangles

The connections with order theory do not stop with polyhedra, but extend into con-
tinuous geometry. Klain & Rota [15, p.158] show that the solid angle subtended by
a triangle inscribed on a sphere, called #pherical excesscan be found using the
inclusion-exclusion principle

QA)=a+pB+y—m (95)

wherea, 3,y € [0, 1] denote the angles of the spherical triangle. Such examples high-
light the degree to which order theory dictates laws.

Statistical Physicsfrom Order

Up to this point, probability theory and geometry have been the main examples by
which | have demonstrated the use of order-theoretic principles to derive a calculus
from an algebra. Thanks to the efforts of Ed Jaynes [33], Myron Tribus [34] and others,
| am able to wave my hands and state that statistical physics derives from order-theoretic
principles. In one important respect this argument is a sham, and that is where entropy
is concerned. Therinciple of maximum entropj83, 35], which is central to statistical
physics, lies just beyond the scope of this order-theoretic framework. It is possible that
a fully-developed calculus of inquiry [28] will provide useful insights. With entropies
being associated with the question lattice, application of the principle of maximum
entropy to enforce consistency with known constraints may in some sense be dual to the
maximum a posterioprocedure in probability theory. However, at this stage it is certain
that the probability-based features of the theory of statistical physics derive directly from
these order-theoretic principles.

Quantum M echanics from Order

Most surprising is Ariel Caticha’s realization that the rules for manipulating quantum
mechanical amplitudes in slit experiments derive from consistency with associativity
and distributivity of experimental setups [11]. Each experimental setup describes an
idealized experiment that describes a particle prepared at an initial point and detected



at a final point. These experimental setups are simplified so that the only observable
considered is that of position. The design of each setup constrains the statements that
one can make about the particle.

These setups can be combined in two ways, which | will show are essemtieéis
and joins of elements of a poset. However, there are additional constraints on these
operations imposed by the physics of the problem. We will see that the meets are not
commutative, and this makes these algebraic operations significantly different from the
AND and OR of propositional logic. This lack of commutativity means that there is no
Bayes’ Theorem analog for quantum mechanical amplitudes. Furthermore, the operation
of negation is never introduced—nor is it necessary. This sets Caticha’s approach apart
from other quantum logic approaches where the negation of a quantum mechanical
proposition remains a hecessary concept.

Caticha considers a simple case where the only experiments that can be performed
are those that detect the local presence or absence of a particle. He considers a patrticle,
which is prepared at timg at positionx; and is later detected at tintg at position
X¢. Experimental setups of this sort will test statements like ‘particle moved from
Xi to x;. The physics becomes interesting when we place obstacles in the path of
the particle. For example, we can place a barrier with a single slit at posiion
The detector ak; will only detect the particle if it moves fronx; to x; and then
onward toxs, wheret; < t; < t¢. * This barrier with a slit imposes a constraint on
the particles that can be detected. The central idea is that experimental setups can be
combined in two ways: increasing the number of constraints on the particle behavior, or
by decreasing the number of constraints. This allows one to impose an ordering relation
on the experimental setups, and by considering the set of all possible setups where the
particle is prepared at and detected at; we have a poset of experimental setups.

Setups with fewer constraints give greater freedom to the possible behavior of the
detected particle. Of course, the ordering relation we choose can be defined in terms of
the constraints on the particle’s behavior or, dually, on the freedom that the setup allows
the particle. Each relation will lead to a poset, which is dual to the poset ordered by its
dual ordering relation. Maintaining a positive attitude, | will use the ordering relation
that describes the freedom that the setup allows, so that setups with greater freedom will
include setups that allow only a portion of this freedom. Thus at the top of this poset
(Figure 4) is the setup that has no obstructions placed betwa&eandx;. The particle
having been prepared atand detected ats is free to have taken any path during its
traversal. Caticha uses a concise notation to describe setups. The top setup can be written
asT = [xs,%], which reading right to left states that the particle is known to staxt at
and is known to arrive ats.

The most constrained setup is the one at the bottongs it is completely filled with
obstruction$. This setup is analogous to the logical absurdity in the sense that there is
no way for a particle prepared g&tto be detected at;. More interesting are the join-

7 These paths are in space-time. For simplicity, | will often omit reference to the time coordinate.

8 All setups with obstructions that provide no way for a particle to travel frpto x; belong to the same
equivalence class of obstructed setups and are represented Hyis includes setups with obstructed
pathways.



FIGURE 4. A partial schematic of Caticha’s poset of experimental setups where a particle is prepared
atx; and is later detected at. Solid lines indicate<, whereas dashed lines indicatewhere there are
setups that are not illustrated. See the text for details.



irreducible setups that cover. These are the setups that allow only a single path from
X to X;. Three exampleA, B, andC can be seen in Figure 4.

All the setups in the poset can be generated by joining the join-irreducible setups. As
Caticha, defined his poset in terms of an algebra, we must look at this algebra carefully to
identify the complete set of join-irreducible setups. Obviously the atomic setups, which
are the setups with a single path frogto x¢, are join-irreducible. However, Caticha
defined the join of two setups only for cases where the two setups differ by at most one
point at one time. Thus we must work through his algebra using the poset structure to
discover how to perform the join in more general cases. Consider the two &$apd
SSin Figure 4. The setufSis a single-slit experiment where the particle is known to
have been prepared:at is known to have gone through the slib@tand was detected
atxg, written concisely aSS= [x;,x1,%]. Similarly, SS is a different single-slit setup
written SS = [x¢, X}, %]. Their join is a double-slit setup

DS=SSvSS (96)
found by
DS= [x¢,X1, %] V [Xf, X7, Xi], (97)
which is written concisely as
DS= [Xf ) (X17 Xll) ) Xi] . (98)

This can be read asThe particle was prepared at,Xs known to have passed through
either the slit at x or the slit at X, and was detected at X This definition describes the
join of two setups differing at only one point. Before generalizing the join, we will first
examine the meet.

Caticha describes the simplest instance of a meet [11, Eqn. 2], which is

[Xg, 1] A [X1,X%] = [X¢, X2, %], (99)

giving the single-slit experimer$Sin Figure 4. This equation is interesting, because
neither setup on the left-hand side of (99) is a valid setup in our poset, since the particle
is not always prepared &tand it is not always detectedat. Instead, what is going on

here is that this meet represents the Cartesian product of two setups. Two smaller setup
posets are being combined to create a larger setup poset. This is demonstrated by the
meet of AU and AL in Figure 4, each of which has a single path on one sixearfd is

free of obstructions on the other side. AU is the Cartesian product of the top setup in the
set of posets describing particles preparex] and detected at;, which | write asT q;,

and a setup consisting of a single path in the set of posets describing particles prepared
atx; and detected at;. We can write these posets coordinate-wise

AL

AU (Tf17Ali) (100)

(Af1, T1i)

whereA;; is the setup where the particle is prepared;and is detected at; and is
constrained to follow that portion of the path in the single-path sétuBetupsAss



and T ¢, are defined similarly. Their meet is found trivially, since for each coordinate,
XA T = xfor all x. Thus
AU ANAL = (Af1,Ag) (101)

which is a valid expression for the entire single-path sétup
A= (Ar1,A1), (102)

and is consistent with Caticha’s definition in (99). This interpretation, which should
be compared to our earlier discussion on the lattice product, also provides insight into
how one can decompose the single-path sefy andC into a series of infinitesimal
displacements. Each infinitesimal displacement of a particle can be described using a
setup in a smaller poset. Using the Cartesian product, these setups can be combined
to form larger and larger displacements. Thus the single-path setups can be seen to
represent meets of many shorter single-path segment setups.

We can use what we have learned from the product space example to better understand
the join of two experimental setups. We can join the setdpsand AU using the
Cartesian product notation. Sindeis the top element of the poset, when joined with
any other element of the poset the result is always the top] ivex = T, for anyx in
the poset. Thus we see that

AU Vv AL (A1, T1i) V(T 1,A5)
(Af1V Tr1, Ty VAg)
(T¢1, T1i)

SS

(103)

The interpretation of the two posets forming this Cartesian product is key to better
understanding the join. The result states that the particle is prepargdiad is free

to travel however it likes to be detected»at and that it is prepared ai and is free

to travel however it likes resulting in a detectionxat The result is a particle that is
prepared ak;, passes througky and is detected at;. Thus their join is the single slit
experimentAU VV AL = SS This result extends Caticha’s algebraic definition of the join.

Two setups with non-intersecting paths can also be joined. This must be the case since
the top setup in this poset is obstacle-free and includes all single-path setups. Consider a
setup divided by the straight line connectiygandxs. Two setups can be formed from
this, one by filling the left half with an obstacle, calLitand the other by filling the right
half R. Clearly, their join must be the top element, as one setup prevents the particle from
being to the left of the line and the other one prevents it from being to the right. This can
be extended by considering two setups each with paths that do not intersect one another.
This example is shown in Figure 4, as the join of two single-path sé&w@giC, which
results in a two-path setupv C.

At this stage, it is not completely clear to me how to handle setups with two paths
that intersect at multiple points. Clearly, two paths that intersect at a single median
point, such ax;, can be considered to be the product of two setups each with two non-
intersecting paths. Again, consistency will be the guiding principle. What is important
to this present development is that we know enough of the algebra to see what kind
of laws we can derive from order theory by generalizing from order-theoretic inclusion



to degrees of inclusion. First, Caticha showed that the join is associative. This implies
that there exists a sum rule. Second, he showed that when the setups exist the meet
Is associative and distributes over the join. This leads to a product rule. By measuring
degrees of inclusion among experimental setups with complex numbers, Caticha showed
that the sum and product rules applied to complex-valued valuations are consistent with
the rules used to manipulate quantum amplitudes. By looking at the join of &anpb
C one can visualize how application of the sum rule leads to Feynman path integrals [36],
which can be used to compute amplitudes for setupsBik&C, and by iterating across
the posetSSandT. Also, the amplitude corresponding to a setup representing any finite
displacement can be decomposed into a product of amplitudes for setups representing
smaller successive displacements. Last, it should be noted that the lack of commutativity
of the meet implies that there is no Bayes’ Theorem analog for quantum amplitudes.
Furthermore, using these rules Caticha showed that that the only consistent way to
describe time evolution is by a linear Schrdodinger equation. This is a truly remarkable
result, as no information about the physics of the particle was used in this derivation of
the setup calculus—only order theory! The physics comes in when one assigns values
to the setups in the poset. This is done by assigning values to the infinitesimal setups,
which is equivalent to assigning the priors in probability theory. At the stage of assigning
amplitudes, we can now only rely on symmetry, constraints, and consistency with other
aspects of the problem. The calculus of setup amplitudes will handle the rest. The fact
that these assignments rely on the Hamiltonian and that they are complex-valued are
now the key issues. Looking more closely at the particular symmetries, constraints and
consistencies that result in the traditional assignments independent of the setup calculus
will provide deeper insight into quantum mechanics and will teach us much about how
to extend this new methodology into other areas of science and mathematics.

DISCUSSION

Probability theory is often summarized by the statemprabability is a sigma algebra
which is a concise description of the mathematical properties of probability. However,
descriptions like this can limit the way in which one thinks about probability in much the
same way that the statemegtavity is a vector fieltlimits the way one thinks about
gravitation. To gain new understanding in an area of study, the foundations need to
be re-explored. Richard Cox’s investigations into the role of consistency of probability
theory with Boolean algebra were a crucial step in this new exploration. While Cox’s
technique has been celebrated in several circles within the area of probability theory
[33, 23, 37], the deeper connections to order theory discussed here have not yet been
fully recognized. The exception is the area of geometric probability where Gian-Carlo
Rota has championed the importance of valuations on posets giving rise to an area of
mathematics which ties together number theory, combinatorics, and geometry. Simple
relations, such as the inclusion-exclusion principle, act as beacons signalling that order
theory lies not far beneath.

Order theory dictates the way in which we can extend an algebra to a calculus by
assigning numerical values to pairs of elements of a poset to describe the degree to which



one element includes another. Consistency here is the guiding principle. The sum rule
derives directly from consistency with associativity of the join operation in the algebra.
Whereas, the product rule derives from consistency with associativity of the meet, and
consistency with distributivity of the meet over the join.

It is clear that the basic methodology of extending an algebra to a calculus, which is
presently explicitly utilized in probability theory and geometric probability, is implicitly
utilized in information theory, statistical mechanics, and quantum mechanics. The order-
theoretic foundations suggest that this methodology might be used to extend any class of
problems where partial orderings (or rankings) can be imposed to a full-blown calculus.
One new example explored at this meeting is theking of preferences decision
theory, which is explored in Ali Abbas’ contribution to this volume [38]. More obvious
is the relevance of this methodology to the development of the calculus of inquiry
[25, 26, 8, 6], as well as Bob Fry’'s extension of this calculus to cybernetic control
[27]. A serious study of the relationship between order theory and geometric algebra,
recognized and noted by David Hestenes [39, 40], is certain to yield important new
results. With the aid of geometric algebra, an examination of projective geometry in this
order-theoretic context may provide new insights into Carlos Rodriguez’s observation
that the cross-ratio of projective geometry acts like Bayes’ Theorem [5].
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